If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+20x-675=0
a = 3; b = 20; c = -675;
Δ = b2-4ac
Δ = 202-4·3·(-675)
Δ = 8500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8500}=\sqrt{100*85}=\sqrt{100}*\sqrt{85}=10\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{85}}{2*3}=\frac{-20-10\sqrt{85}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{85}}{2*3}=\frac{-20+10\sqrt{85}}{6} $
| 3/7=x/50 | | ?x0.7=0.028 | | 8.4o-6.4=14.2+6.3o | | 1/3=x/7 | | -7x-69=-181 | | 15/8=x12 | | 6(x-8.8)=6.6 | | 2(23+a)=35 | | 9r=-7+8r | | 74+43+(4x-21)=180 | | 3(a-1)=10 | | 9m-8=10+3m | | 567x-27-566×+64-37=33 | | 2/9=x/15 | | -1+6n+2n=9n-3 | | 8(x+5)=-48 | | -q-5=1+9 | | 9.2(x-3.5)=36.8 | | 3(d+-3)=-27 | | 2+9y-7=10y+4 | | -7(y-80)=-70 | | 5x+4-9x-11=57 | | -3s=10-2s | | 8p+10=90 | | 105-7x=-49 | | 92=4(t-67) | | 4+3n=4n | | 4(n+5)(n+2)=280 | | -2-5d=-3-6d | | s/4-3=3 | | -h-10=-10h+8 | | 2x+2(2x-4=244 |